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Safety-critical autonomous systems



Control theory in safe autonomy

Barrier function:
Ensure safety by forcing the
safe set to be a forward in-
variant set

Reachability analysis:
Ensure safety by certifying
all the states the system can
reach stay in the safe set



Challenges in safe autonomous systems

1. High-dimensional state, input and measurement spaces

2. Complex and highly nonlinear dynamics and environments

3. Uncertainties in the systems and environments



Safety verification under uncertainties

Deterministic uncertainty:

- worse case

- bounded

- unknown statistics

- robust control

Stochastic uncertainty:

- in average

- unbounded

- known statistics

- stochastic control

Goal: effective and scalable approach to safety assurance
for general nonlinear systems under both deterministic and
stochastic disturbances

System dynamics
dXt = f (Xt, dt, t)dt + gt(Xt)dWt

Xt+1 = f (Xt, dt, t) + wt



Outline

1) Reachability Analysis of Stochastic Systems

2) Safety Verification of Stochastic Systems via Probabilistic Tube



Reachability Analysis of Stochastic Systems



Probabilistic reachability

DRS: Given initial set X0 ⊆ Rn and disturbance set D, the
deterministic reachable set of ẋt = f (xt, dt) at time t starting
from X0 with disturbances in D is Rt = {xt | xτ , 0 ≤ τ ≤
t is a trajectory with x0 ∈ X0, dτ ∈ D}

δ-PRS: Given initial set X0 ⊆ Rn, disturbance set D, and δ ∈
(0, 1), Rδ,t ⊆ Rn is a δ-probabilistic reachable set of dXt =
f (Xt, dt)dt+g(Xt)dWt at time t if for any x0 ∈ X0 and piecewise
continuous dτ in D, P (Xt ∈ Rδ,t) ≥ 1− δ

DRS is too conservative for
stochastic systems. Unbounded
disturbance often result in trivial
DRS, e.g., dXt = dWt



Separation strategy and stochastic deviation
Associated trajectories: Xt (dXt = f (Xt, dt)dt + g(Xt)dWt), xt

(ẋt = f (xt, dt)) start from the same initial condition X0 = x0 and
driven by the same dτ

Separation strategy: Let Rt be an over-approximation of DRS
and

P (‖Xt − xt‖ ≤ rδ,t) ≥ 1− δ

for some rδ,t, thenRt ⊕ Bn(rδ,t, 0) is a δ-PRS

Problem: Establish a tight
probabilistic bound rδ,t of
the stochastic deviation
‖Xt−xt‖ for associated tra-
jectories Xt, xt



Contraction theory
Matrix measure of A ∈ Rn×n

µ(A) = lim
ε→0+

‖In + εA‖ − 1
ε

Equivalent assumption for ẋt = f (xt, dt)

1. µ(Dx f (x, d)) ≤ c
2. (x− y)>( f (x, d)− f (y, d)) ≤ c‖x− y‖2

Distance between any two trajectories satisfies

‖xt − yt‖ ≤ ect‖x0 − y0‖

- energy function Vt = ‖xt − yt‖2

dVt

dt
= 2(xt − yt)

>(f (xt, dt)− f (yt, dt)) ≤ 2cVt

=⇒ ‖xt − yt‖2 = Vt ≤ e2ctV0 = e2ct‖x0 − y0‖2
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unit disk with radius e�ct



Contraction analysis for stochastic deviation
Assumption: For stochastic system dXt = f (Xt, dt)dt + g(Xt)dWt

1. µ(Dxf (x, d)) ≤ c
2. g(x)g(x)> � σ2In

- (Pham et al 09) Vt = ‖Xt − xt‖2 for associated trajectories Xt, xt

dE(Vt)

dt
=2E[(Xt − xt)

> (f (Xt, dt)− f (xt, dt))] + E[tr(g(Xt)
>g(Xt))]

≤2cE(Vt) + nσ2, V0 = 0

=⇒ E(‖Xt − xt‖2) = E(Vt) ≤ nσ2

2c (e2ct − 1)

Markov inequality

P
(
‖Xt − xt‖ ≤

√
nσ2

2cδ (e2ct − 1)

)
= P

(
Vt ≤ nσ2

2cδ (e2ct − 1)
)
≥ 1− δ



Gap between linear and nonlinear analysis
Linear dynamics

dXt = (cXt + dt)dt + σdWt

ẋt = cxt + dt

Nonlinear analysis

P
(
‖Xt − xt‖ ≤

√
σ2

2c (e2ct − 1)
√

n/δ
)
≥ 1− δ

Gaussian state Xt with covariance

cov(Xt) =

∫ t

0
σ2ec(t−τ)ec(t−τ)dτ = σ2

2c (e2ct − 1) In

Gaussian concentration

P
(
‖Xt − xt‖ ≤

√
σ2

2c (e2ct − 1)(4
√

n + 2
√

2 log(1/δ))
)
≥ 1− δ

√
1/δ vs

√
log(1/δ)

105 vs 4.8 when δ = 10−10



Sub-Gaussian norm concentration

Definition: A random vector X ∈ Rn is said to be sub-Gaussian
with variance proxy ϑ2, denoted as X ∼ subG(ϑ2), if

EX

(
eλ〈`,X〉

)
≤ e

λ2ϑ2
2 , ∀λ ∈ R, ∀` ∈ Sn−1

Lemma (Liu, C. 25): Let X ∼ subG(ϑ2), then for any δ ∈ (0, 1)
and any ε ∈ (0, 1)

‖X‖ ≤ ϑ
√
ε1n + ε2 log(1/δ)

holds with probability at least 1− δ, where

ε1 =
log(1/(1− ε2))

ε2 , ε2 =
2
ε2

Xt − xt is not sub-Gaussian



Average moment generating function (AMGF)
Average exponential function over unit sphere Sn−1

Φn,λ(x) = E`∼Sn−1

(
eλ〈`,x〉

)
Average moment generating function

EX (Φn,λ(X)) = EX

(
E`∼Sn−1(eλ〈`,X〉)

)
Lemma (Altschuler, Talwar. 22): If a random variable X ∈ Rn

satisfies EX (Φn,λ(X)) ≤ e
λ2ϑ2

2 , ∀λ ∈ R, then for any δ ∈
(0, 1) and any ε ∈ (0, 1)

‖X‖ ≤ ϑ
√
ε1n + ε2 log(1/δ)

holds with probability at least 1− δ



Concentration of stochastic deviation

Theorem (Jafarpour, Liu, C. 24): With probability at least 1−δ:

‖Xt − xt‖ ≤
√
σ2(e2ct − 1)

2c
(ε1n + ε2log(1/δ))

same dependence as Gaussian concentration:
√

n,
√

log(1/δ)

Sketch of proof: bound E(Φn,λ(Xt − xt))
- when c = 0, ht = E(Φn,λ(Xt − xt)) satisfies

dht

dt
≤ λ2σ2

2
ht, h0 = 1 =⇒ E(Φn,λ(Xt − xt)) ≤ e

λ2σ2t
2

- when c 6= 0, convert to c = 0 through X̃t = e−ctXt, x̃t = e−ctxt



Tight probabilistic bound
- linear dynamics dXt = c Xtdt + σdWt

tight dependence:
√

n,
√

log(1/δ)



Probabilistic reachability with deterministic methods

Theorem (Jafarpour, Liu, C. 24): Let Rt be an over-
approximation of the DRS of deterministic system ẋt =
f (xt, dt). Then, for any probability level δ ∈ (0, 1), a δ-PRS
of dXt = f (Xt, dt)dt + g(Xt)dWt is

Rδ,t = Rt ⊕ Bn (rδ,t, 0)

where rδ,t =
√

σ2

2c (e2ct − 1)(ε1n + ε2 log(1/δ))

Rt: computed with any deterministic reachability analysis methods

- Contraction-based, interval-based for scalability

- HJB-based, set-propagation for accuracy



Safety Verification of Stochastic Systems via
Probabilistic Tube



Safety verification of stochastic systems

probabilistic reachability is not enough

stochastic trajectories should avoid unsafe set with high probability



Martingale inequality
nonnegative supermartingale

Ms ≥ E[Mt | Fs], s < t

Ville’s martingale inequality

P
(

sup
t≥0

Mt ≥ C
)
≤ E[M0]

C

foundation of stochastic barrier methods



Set-erosion and probabilistic tube
Set-erosion: certify the safety of ẋt = f (xt, dt) over an eroded safe set

Probabilistic tube: a tube in which stochastic
trajectories stay with high probability

Problem: Given a finite time horizon
[0, T], establish a tight probabilistic
tube for dXt = f (Xt, dt)dt+g(Xt)dWt



Affine martingale for probabilistic tube

Definition: For a stochastic process vt, a nonnegative function
M(v, t) : Rn ×R→ R≥0 is said to be an affine martingale of vt

if there exist at, bt ∈ R such that

E(M(vt+dt, t + dt)|vt)−M(vt, t)
dt

≤ atM(vt, t) + bt

Affine martingale can be converted to a supermartingale:
M̃(vt, t) = M(vt, t)ψt +

∫ T
t bτψτdτ with ψt = e

∫ T
t aτdτ

Given any M > 0 and Vt = {v : M̃(v, t) ≤ M}, it holds that

P (vt ∈ Vt, ∀t ≤ T) ≥ 1−
M(v0, 0)ψ0 +

∫ T
0 bτψτdτ

M



Martingale for probabilistic tube

Average moment generating function induces affine martingale

M(Xt − xt, t) = Φn,λ(Xt − xt) = E`∼Sn−1

(
eλ〈`,Xt−xt〉

)
is an affine martingale over Xt − xt when c = 0

E(Φn,λ(Xt+dt − xt+dt)|Xt − xt)− Φn,λ(Xt − xt)

dt
≤ λ2σ2

2
Φn,λ(Xt − xt)

Theorem (Liu, Jafarpour, C. 25):

P (‖Xt − xt‖ ≤ rδ,t, ∀t ≤ T) ≥ 1− δ

where

rδ,t = ectσ

√
1− e−2cT

2c
(ε1n + ε2 log(1/δ))



Analysis of martingale-based probabilistic tube
- linear dynamics dXt = c Xtdt + σdWt



Modified probabilistic tube for contractive dynamics
union bound + martingale

Theorem (Liu, Jafarpour, C. 25): When c < 0

P (‖Xt − xt‖ ≤ rδ,t, ∀t ≤ T) ≥ 1− δ

where

rδ,t =
σ(
√

1− e2ct +
√

e−2c∆t − 1)√
−2c

√
ε1n + ε2 log

2T
δ∆t



Safety verification via probabilistic tube

Theorem (Liu, Jafarpour, C. 25): Given a safe set C ∈ Rn, an
initial state set X0 ⊆ C and a probability level δ ∈ (0, 1), the
stochastic system dXt = f (Xt, dt)dt + g(Xt)dWt can be verified
to be safe with 1− δ guarantee on the time horizon [0,T] if the
deterministic system ẋt = f (xt, dt) satisfies

x0 ∈ X0 ⇒ xt ∈ C 	 Bn (rδ,t, 0) , ∀dτ ∈ D, ∀t ≤ T

where

rδ,t =

ectσ
√

1−e−2cT

2c (ε1n + ε2 log(1/δ)) c ≥ 0
σ(
√

1−e2ct+
√

e−2c∆t−1)√
−2c

√
ε1n + ε2 log 2T

δ∆t c < 0



Numerical Examples



Safety verification of autonomous vehicles



Safety verification under STL specifications
Signal temporal logic formula

ϕ = (�[0,T]πobs) ∧ (♦[0,T]πgoal2) ∧ (¬πgoal2U[0,T]πgoal1)

�[0,T]: globally ♦[0,T]: eventually U[0,T]: until



Safe stochastic MPC

Deterministic MPC over an
eroded safe set C 	 Bi|k

min
uk:k+N−1|k

JN(xk:k+N|k, uk:k+N−1|k)

s.t. xk|k = Xk

xi+1|k = f (xi|k, ui|k)

xi+1|k ∈ C 	 Bi|k

i = k, . . . , k + N − 1



Takeaway

1. A scalable framework of safety assurance for stochastic systems

2. Separation strategy reduces stochastic problems into
deterministic problems

3. A new set of tools to analyze fluctuations of stochastic dynamics
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