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Safety-critical autonomous systems




Control theory in safe autonomy

Barrier function: Reachability analysis:
Ensure safety by forcing the Ensure safety by certifying
safe set to be a forward in- all the states the system can
variant set reach stay in the safe set




Challenges in safe autonomous systems

1. High-dimensional state, input and measurement spaces
2. Complex and highly nonlinear dynamics and environments

3. Uncertainties in the systems and environments



Safety verification under uncertainties

Deterministic uncertainty: Stochastic uncertainty:
- worse case - in average
- bounded - unbounded
- unknown statistics - known statistics
- robust control - stochastic control

Goal: effective and scalable approach to safety assurance
for general nonlinear systems under both deterministic and
stochastic disturbances

System dynamics
dXt :f(Xl‘7 dh t>dt + gl<Xt)d‘/Vf
Xir1 =f( Xy, diyt) + v,
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1) Reachability Analysis of Stochastic Systems

2) Safety Verification of Stochastic Systems via Probabilistic Tube



Reachability Analysis of Stochastic Systems



Probabilistic reachability

DRS: Given initial set Xy C R”" and disturbance set D, the
deterministic reachable set of X, = f(x;,d;) at time ¢ starting
from A with disturbances in D is R, = {x; | x,,0 < 7 <
t is a trajectory with xo € Xp,d, € D}

DRS is too conservative for X,
stochastic systems. Unbounded . ,
disturbance often result in trivial X
DRS, e.g., dX;, = dW,

Stochastic X

0-PRS: Given initial set Xy C R”, disturbance set D, and
, Rs; € R™is a d-probabilistic reachable set of dX; =
f(Xy,d;)dt+g(X;)dW, at time ¢ if for any xo € X)) and piecewise

continuous d, in D,




Separation strategy and stochastic deviation

Associated trajectories: X; (dX, = f(X,, d,)dr + g(X,)dW,), x;
(x; = f(x;, d,)) start from the same initial condition Xy = xp and

driven by the same d;

and

Separation strategy: Let R, be an over-approximation of DRS

P(IX; — x| <rss) >1—=0

for some r5;, then R: @ B"(rs5,,0) is a 5-PRS

Problem: Establish a tight
probabilistic bound 75, of
the stochastic deviation
|| X;—x;|| for associated tra-
jectories X;, x;

X0 = Xo

same u,
—

robustness
uffer

Ry &© B"(rs,:0)

=
>
Il



Contraction theory

Matrix measure of A € R"*"

.+ eA| -1
A= lim ————— Yo
,U( ) e—0t €
Equivalent assumption for %, = f(x;, d;) o wnit disk with radius e~

L p(Df(x,d)) < c \
2 (x =) (f(x,d) = (. d)) < ellx— P

Distance between any two trajectories satisfies
e = yill < €[lxo = ol
- energy function V; = ||x; — y,||
— =2(x — y,)T(f(x,,d,) —fn,dr)) < 2cVi

= |lx — y||* = Vi < €V = *|lx0 — yo|?



Contraction analysis for stochastic deviation

Assumption: For stochastic system dX; = f(X;, d;)dr + g(X;)dW,;

L. ﬂ(Dxf(xa d)) <c
2. g5 = 0%,

- (Phametal 09) V, =

dEcng ) _oB((X, — x) T (F(Xerds) —

|1X; — x;||? for associated trajectories Xy, x;

fx,d)] + Eltr(g(X0) " g(X0))]

<2cE(V,) +no’, Vo=0

— E(|X, — x|?) = E(V;) < %5(* — 1)

Markov inequality

Qm—w< @ -n)>1-5

g ) =r (v



Gap between linear and nonlinear analysis

Linear dynamics
dXt = (CX[ + d[)dt + O’th

).Ct = cx;+ d[
Nonlinear analysis

(1wl < 50 = DVAfE) = 10

Gaussian state X; with covariance
t
cov(X;) = / o2 =) =T g — g—j(ez“ - 1)1,
0

Gaussian concentration

P (1 - < 56 D4+ 23/ ZRg(17D)) 2 10

v/ 1/0 vs /log(1/0)
[105 vs 4.8 when § = 1017 Gequa




Sub-Gaussian norm concentration

Definition: A random vector X € R” is said to be sub-Gaussian
with variance proxy 92, denoted as X ~ subG(¥?), if

E (AM,X}) < 22 v)\ n—1
x (e e eER, VeS8

Lemma (Liu, C. 25): Let X ~ subG(¥?), then forany 6 € (0, 1)
and any € € (0, 1)

IX]| < 9y/Ern + 22 Tog(1/9)

holds with probability at least 1 — §, where

log(1/(1 — £2)) 2
= 2 2= a2

| |




Average moment generating function (AMGF)

Average exponential function over unit sphere S”"~!

D, 7 (x) =Ep gn-1 (e/\<g’x>>

Average moment generating function

Ex (@4,(X)) = Ex (Epsimt (M)

Lemma (Altschuler, Talwar. 22) If a random variable X € R"
2
satisfies Ex (P, (X)) < e = , VA € R, then for any § €
(0,1) and any € € (0, 1)
IX|| < 9+/zin+ 22 log(1/0)

holds with probability at least 1 — ¢




Concentration of stochastic deviation

Theorem (Jafarpour, Liu, C. 24): With probability at least 1 —9:

0.2 eZCt —1
I1X — x| < \/%(eln + eplog(1/9))

same dependence as Gaussian concentration: \/n, /log(1/9)

Sketch of proof: bound E(®, (X, — x;))
-when ¢ = 0, h; = E(®, »(X; — x;)) satisfies

dhy X202 2,2,
5 < T”h,, hp=1 = E@\(X—x))<e 5

- when ¢ # 0, convert to ¢ = 0 through X, = ¢~“X,, X, = ¢ “x,



Tight probabilistic bound
- linear dynamics dX; = ¢ X,dt + odW;

Bound given by Theorem 1

7 —— Stochastic Trajectories
s — Ke—xd ” 1 6
---- Bound by Theorem 1 s
---- Bound by x? concentration
5 i A 2 X
" 2
— iy 0
<4 & o
! -4
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Probabilistic reachability with deterministic methods

Theorem (Jafarpour, Liu, C. 24): Let R, be an over-
approximation of the DRS of deterministic system X, =
f(x;,d;). Then, for any probability level § € (0,1), a 6-PRS
of dX; = f(X;,d,)dr + g(X;)dW, is

R&,z = ﬁt & B" (”6,” 0)

where rs5; = \/g—z(em — 1)(e1n + e2log(1/9))

\.

R;: computed with any deterministic reachability analysis methods
- Contraction-based, interval-based for

- HJB-based, set-propagation for



Safety Verification of Stochastic Systems via
Probabilistic Tube



Safety verification of stochastic systems

initial set trajectory
<« unsafe set

L

| probabilistic reachability is not enough

| stochastic trajectories should avoid unsafe set with high probability

Georgia “*\
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Martingale inequality
nonnegative supermartingale

M > E[M, | F|, s<t
Ville’s martingale inequality

P(supM,>C

S Lt
>0 c

> E[Mo]

foundation of stochastic barrier methods

Georgia ‘
Tech|)



Set-erosion and probabilistic tube

Set-erosion: certify the safety of x, = f(x;, d;) over an eroded safe set

| | | | | | | | | | | I I x
(64 //‘. AR LT L Xt >C e Bn(rd,t' O)
. K7 TR S

Probabilistic tube: a tube in which stochastic
trajectories stay with high probability

\6 = 1%o0
\\5 =1%
Problem: Given a finite time horizon =%
[0, T, establish a tight probabilistic \ ’
tube for dXt = f(Xz, dt)dt—'—g(Xt)th ¢
Georgia “

Techl|/



Affine martingale for probabilistic tube

Definition: For a stochastic process v;, a nonnegative function
M(v,1) : R" x R — R is said to be an affine martingale of v,
if there exist a;, b; € R such that
E(M(V;.i_dt, = dt) |Vt) - M(V[, t)
dr

S atM(V[, t) -+ bl‘

Affine martingale can be converted to a supermartingale:

M(ve, t) = M (v, t)); + ftT brp-dr with 1, = ol ardr

Given any M > 0 and V; = {v: M(v,r) < M}, it holds that
M(vg, 0)g + /UT b )dT
M

Pyv,eV,Vt<T)>1-—



Martingale for probabilistic tube

‘A\"eruge moment generating function induces affine martingale ‘

M(Xf Xt ) = (I)n,)\(Xt - xt) =Ej g1 <e>‘<Z’X’_x’>)
is an affine martingale over X; — x;, when ¢ = 0

E((I)n,/\(Xt+dt - xt+dt)|Xt - xt) - CDn,)\(Xt - xt) < No?
dr - 2

(I)n,/\(Xt - xt)

Theorem (Liu, Jafarpour, C. 25):

P(|X — x| <750, VEST) 216

where

1 — e—ZCT
rog =eo z—c(eln + ez log(1/9))




Analysis of martingale-based probabilistic tube

- linear dynamics dX; = ¢ X,dt + odW;

——— Stochastic trajectories of [X| . 2.5 ——— Stochastic trajectories of X,
————— Bound by Theorem 1 S ~~~Bound by Theorem 1

|
o

0 0.5 1 15 2 0 0.5 1 15 2

0.25 ——— Stochastic trajectories of [X |
|~~~ ~Bound by Theorem 1

0 0.005 0.01 0.015 0.02
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Modified probabilistic tube for contractive dynamics

union bound + martingale

Theorem (Liu, Jafarpour, C. 25): When ¢ < 0
PIX — x| S rsy, E<T)>1-36

where
(V1 — Xt + /e~ Al 1)\/ . 2T
= ein+ eplog —
0,1 \/—_26' 1 2 10g 5At

---- : Single-time bound (6)
—— :Trajectory-level bound (14) on At
,,,,,, : Trajectory-level bound in total

0 0.05 0.1 0.15 0.2 0.25 |
Georgia
Tech |




Safety verification via probabilistic tube

Theorem (Liu, Jafarpour, C. 25): Given a safe set C € R”, an
initial state set Xy C C and a probability level 6 € (0, 1), the
stochastic system dX; = f(X;, d;)dt + g(X;)dW, can be verified
to be safe with 1 — § guarantee on the time horizon [0, 7] if the
deterministic system x; = f(x;, d;) satisfies

X0 € Xo=>x€CoB" (r5:,0), Vd; €D, Vt<T

where

ec’a\/l 3 L(e1n + e2log(1/9)) c>0

rse =
) U(m+ e—2cAr_ l) 2T
e ein+elogsx; ¢<0




Numerical Examples

Georgia “:
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Safety verification of autonomous vehicles

Py
©
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[ Obstadies
—— Sampled stochastic trajectories| 6
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Safety verification under STL specifications

Signal temporal logic formula

Ujo,71: globally

¥ = (D[O,T]Trobs) A (O[O,T]Wgoalz) A (_‘7rg0a12u[0,T]77goall)

Qpo,r): eventually

U[O,T]5 until

[ Obstacle

Predicate Erosion

——— Stochastic Trajectories

[ Obstacle 8
Deterministic Trajectories.

3

-3 -2 -1 0 1 2 3
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Safe stochastic MPC

Deterministic MPC over an
eroded safe set C © B

min
Uk:k+N—11k
S.t.

IN (kN[> Uksk+-N—1]k)
X = Xk

Xigp1jke = S (Xijwe> Uijg)
Xip1 € C O By
i=k ... k+N-1

stochastic trajectories
- - -safety constraint

0 5 10 15 20

Georgia |
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Takeaway

1. A scalable framework of safety assurance for stochastic systems

2. Separation strategy reduces stochastic problems into
deterministic problems

3. A new set of tools to analyze fluctuations of stochastic dynamics
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